If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+13q-12=0
a = 4; b = 13; c = -12;
Δ = b2-4ac
Δ = 132-4·4·(-12)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-19}{2*4}=\frac{-32}{8} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+19}{2*4}=\frac{6}{8} =3/4 $
| 9y-1=-100 | | 4x/5+7=2x-10 | | w^2+19w+18=0 | | 7d-1/3(6-15d)=70 | | 3h^2+43h+14=0 | | -8x+4=22 | | 6-7s=-50 | | 4q^2-43q-11=0 | | 2h^2-13h+5=-2h | | 44.89=9g+3.76 | | ((2x+1)/8)-((x-1)/3)=5/24 | | 2(2x+4)+4=4x+8 | | 3+4x=-6x+33 | | (x−3)7/5=128 | | 5a-(4-a)=3a-22 | | 3=x÷3.3 | | 28(3x+11/7)=0 | | -7(5x-2)=3(-6x+25)-10 | | -66-6x=-12x+180 | | 13=7q-5q | | 6f-7=29/5 | | 13=7q-6q | | 3(-4x-5)=8x+25 | | 3h=(-8) | | 3x-9=7x-45 | | 2x+4=-8x+5 | | 9+4y=17; | | 90+x-58=180 | | 20-15=2x | | 3x+8+x+5=x+6 | | z/6+5=7-z.6 | | 16=4d-4 |